Cryptography

7 – Loose ends

G. Chênevert November 18, 2019

Elliptic curves

Key management

Proofs

Homomorphic encryption

And more...

Let (\mathcal{G}, \cdot) be a finite abelian group.

Given $g \in \mathcal{G}$ and x such that

$$x = g^{\xi} = \underbrace{g \cdot g \cdots g}_{\xi}$$
 in \mathcal{G} ,

find $\xi \equiv \log_g(x)$, with $\nu = \operatorname{ord}_{\mathcal{G}}(g)$, the smallest $\nu > 0$ for which $g^{\nu} = 1$.

Best known DL algorithm: $\mathcal{O}(\nu^{\frac{1}{2}})$ for a generic group \mathcal{G} . (Much smaller for $\mathcal{G} = (\mathbb{Z}/n\mathbb{Z})^{\times}$.)

Elliptic curves

Definition

An elliptic curve is a plane curve defined by an equation of the form

$$\mathcal{E}: y^2 = x^3 + ax + b$$

Example

 $a=rac{1}{10},\ b=1$

Given $P, Q \in \mathcal{E}$, the line through P and Q intersects \mathcal{E} at a third point, say R = (x, y). Definition

$$P+Q:=(x,-y)$$

Fun fact: This makes $\mathcal{E} \cup \{O\}$ into an abelian group!

(The *point at infinity* $O = (0, \infty)$ being the neutral element)

Given $G \in \mathcal{E}$ of (additive) order *n* and $P \in \mathcal{E}$ such that

$$P = mG = \underbrace{G + \dots + G}_{m}$$
 in \mathcal{E} ,

find $m \equiv \log_G(P)$.

(Easy to solve over the real or complex numbers)

Instead: consider solutions modulo a fixed prime p

$$y^2 \equiv x^3 + ax + b$$

 $\rightsquigarrow \mathcal{E}(\mathbb{F}_p)$ elliptic curve over the finite field \mathbb{F}_p

(a finite abelian group!)

Basic computations are easy...

...but the DLP is hard!

Theorem (Hasse bound)

$$\#\mathcal{E}(\mathbb{F}_p) = 1 + p + \mathcal{O}(\sqrt{p})$$

hence $\#\mathcal{E}(\mathbb{F}_p) \approx p$.

We use elliptic curves with points G of large order $n \approx p$.

- Alice and Bob agree on "safe" parameters \mathcal{E} and G.
- Alice chooses a, computes A = aG in \mathcal{E} .
- Bob choooses *b*, computes B = bG in \mathcal{E} .
- Shared secret is

$$K := (ab)G = aB = bA.$$

Keys:

- *d* private decryption key
- E = dG public encryption key

Alice wants to send a message $M \in \mathcal{E}$ to Bob.

ECEIGamal

Encryption:

- Alice chooses random s, computes S = sG
- Computes shared secret K = sE
- Computes encrypted C = M + K
- Sends the pair (S, C)

Decryption:

Upon reception of a pair (S, C), Bob

- Computes shared secret K = dS
- Recovers M = C K

To get ℓ bits of security:

- choose a 2ℓ -bit prime p
- an elliptic curve \mathcal{E} over \mathbb{F}_p
- and a point G on \mathcal{E} of (almost) prime order n that generates (most of) $\mathcal{E}(\mathbb{F}_p)$.

Much harder to manufacture than *e.g.* for RSA – but can be reused.

Recommended curves

In the US, NIST proposed in 2005 a list of 5 elliptic curves of size

192, 224, 256, 384 and 521 bits

. . .

(as well as 5 curves over binary fields \mathbf{F}_{2^k})

Dual_EC_DRBG controversy

Alternative: Brainpool curves

Also: recent concern about Suite B cf. rise of quantum computing !?

Post-quantum cryptography

Ongoing NIST standardization process for quantum-resistant primitives.

Round 2: 17 public-key encryption primitives, 9 digital signature primitives.

Broadly fall into 4 categories:

- lattice-based
- code-based
- hash-based
- multivariate polynomial-based

Stay tuned!

Elliptic curves

Key management

Proofs

Homomorphic encryption

And more...

Consider a pool of n users, each of which could want to communicate confidentially with any other.

$$\implies \binom{n}{2} = \frac{n(n-1)}{2}$$
 interactions to secure.

With a single secret key for every potential interaction:

every user needs to securely obtain and store n-1 secret keys!

Use public-key encryption for everything.

Every user needs access to any of the n-1 other *public* keys

But: asymmetric ciphers are much slower than symmetric ones.

 \implies hybrid systems are usually favored (but: full-fledged PKI needed)

TLS 1.3 specification

- X.509 certificates are used to authenticate the parties
- A master secret is set up
- Bulk of communication encrypted with a symmetric cipher
- MACs are included for data integrity

Various combinations of cipers and MACs (**cipher suites**) are supported (providing varying levels of security).

- RSA-PSS signature for server authentication
- ECDH for key agreement
- Sessions keys are derived from the master secret
- AES-CBC used for encryption
- SHA256-HMAC for message authentication

Agreed upon during initial handshake.

Comments

- Provides **forward secrecy** if fresh DH parameters are used every time (recommended!)
- These parameters are signed, preventing man-in-the-middle attacks
- Session keys need to be refreshed after a while
- Often subject to downgrade attacks

Purely symmetric key management solution using a trusted key server S

Alice wants to communicate securely with Bob.

- Both set up secret keys k_A and k_B with the server.
- Alice asks the server for a secret key k_{AB} to be used with Bob.

Needham-Schroeder algorithm (1978)

• The server replies to Alice with

$$E(k_A, k_{AB} \parallel E(k_B, k_{AB})).$$

• Alice decrypts this message and sends to Bob

 $E(k_B, k_{AB}).$

Alice and Bob now have k_{AB} and can start communicating securely.

- Nonces need to be included to prevent replay attacks
- Provides mutual authentication as well as confidentiality
- Man-in-the-middle attacks are not possible
- Server does not need to remember keys
- But: single point of failure

Elliptic curves

Key management

Proofs

Homomorphic encryption

And more...

In various cryptographic protocols, Bob might worry that Alice is not doing things properly

```
(read: cheats! - or makes mistakes)
```

and ask her for *proofs* of good conduct.

Bob: challenger

Alice: prover

To make sure that Alice has access to suitable computing resources:

on input m, asks her to find a string k for which the binary representation of

 $H(m \parallel k)$ starts with *n* zeros.

Partial collision problem: her best approach is to brute-force k

will take 2^n trials on average

(this is what Bitcoin cryptominers do... with an ecological impact of epic proportions)

Alice and Bob play a game.

Heads: A gives $\in 100$ to B, tails: B gives $\in 100$ to A.

Alice is responsible for tossing the coin.

Alice: "Tails!"

Bob: "Prove it!"

Secure coin flip

- Alice chooses a random large integer n
- Sends its SHA256 hash to Bob (commitment)
- Bob selects $b \in \{0, 1\}$, sends it to Alice
- Alice returns $(n \% 2) \oplus b$ (result of coin toss)

and *n* (proof of randomness)

Alice cannot manipulate the result unless she knows n and n' of different parity with the same hash!

Sometimes Alice wants to convince Bob of a certain statement, *without revealing anything else than the fact that this statement is true.*

Example

Alice: "I know ξ such that $g^{\xi} \equiv x$ "

Bob: "Prove it!"

Idea: Bob should present Alice with requests that she can only answer correctly if she does indeed know ξ – and that Bob can check are answered correctly.

- Alice chooses a random number $\rho \in]]0, q[[and sends <math>c \equiv g^{\rho}$ to Bob.
- Bob randomly requests Alice to either disclose

$$\rho$$
 or $\rho + \xi \mod q$.

Correctness

If Bob receives exponent ρ' from Alice, he can check the agreement with commitment c by computing

$$g^{
ho'}$$
 or $g^{
ho'} \cdot x^{-1}$ mod p .

Alice can easily fake a correct answer (without knowing ξ) to any of those questions *but not both*. She would have to guess correctly which question Bob will ask before to commit an adequate value of *c*.

If Alice answers correctly *n* requests in a row, Bob can trust that the probability that she knows ξ is $\geq 1 - \frac{1}{2^n}$.

Elliptic curves

Key management

Proofs

Homomorphic encryption

And more...

We mainly considered malleability a bad thing.

But it can actually be useful!

Example

Alice wants to compute the product of two ℓ -bit integers m_1 and m_2 . She could

- Encrypt them using plain-RSA with a 2ℓ -bit modulus
- Send the ciphertexts to Bob and ask him to multiply them
- Decrypt the resulting ciphertext.

Certain ciphers preserve addition or multiplication.

Definition

A fully homomorphic cipher is one that preserves both addition and multiplication.

So what?

A cryptographer's dream

1978

Suppose we have a fully homomorphic cipher

$$E: \mathcal{M} = (\mathbf{F}_2, \oplus, \odot) \longrightarrow \mathcal{C}.$$

Then, since

$$\begin{cases} x \text{ and } y = x \odot y \\ x \text{ or } y = x \oplus y \oplus (x \odot y) \\ \text{not } x = 1 \oplus x \end{cases}$$

we can build a processor that works with encrypted bits!

Theorem (C. Gentry, Standford Ph.D. thesis)

Fully homomorphic ciphers exist.

Gentry's original construction used lattice-based cryptography but a more elementary one was later found.

In both approaches, one starts with a *somewhat homomorphic cipher*.

Secret key: a large odd integer k

Encryption: to encrypt $b \in \{0,1\}$, choose random q and m with $2m \in \llbracket 0, k - 1 \llbracket$ and set

$$c = qk + 2m + b.$$

Decryption: b = (c % k) % 2

These encrypted bits can support a limited number of operations while still decrypting correctly.

After that: need to refresh encryption.

How to do that in the blind processor?

Decrypt through the encryption!

Refreshing encryption

- Alice sends $c_1 = E(k_1, b)$ to Bob
- Bob computes $c_{12} = E(k_2, c_1)$
- Then computes $c_2 = D(k_1, c_{12})$ through the encryption in order to get

$$c_2=E(k_2,b).$$

(For this to work, an asymmetric version of the cipher needs to be used)

A somewhat homomorphic cipher only needs to support its own decryption circuit *plus one operation.*

Not yet...still an area of active research & development.

Current implementations are still somewhat impractical (slow / large keys)

One could in principle run arbitrary encrypted code on arbitrary encrypted data on a remote processor and get the encrypted result back!

Elliptic curves

Key management

Proofs

Homomorphic encryption

And more...

And more...

- split secrets
- secure multipartite computation
- identity and attribute-based encryption
- digital currencies (blockchain)
- differential privacy
- quantum cryptography

New Crypto Wars episode coming soon to a computer near you ...